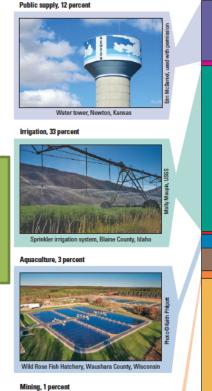
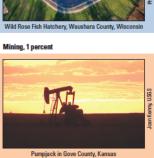


Towards a scalable plasma water treatment reactor via the optimization of reactions and transport at the plasma liquid interface

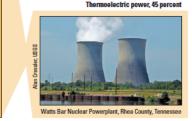
PIs Foster and Kushner


- **Title:** Scalable plasma water treatment methodology via optimization of of plasma liquid interaction surface
- PIs: J.E. Foster and M.J. Kushner, University of Michigan
- Outcome/Deliverable: Using a combination of small scale guiding experiments, simulation, and hardware development, demonstrate operation of plasma reactor with the capacity for piloting applications at modest throughput (>5 gal/min)
- Impact: Introduction of a scalable advanced water treatment method that has potential to address a range of industry relevant contaminants and water treatment needs at reduced cost and system complexity
- Project Duration, Budget: 18-24 months, ~\$200 k-\$250k


University of Michigan Institute for Plasma Science & Engr.

Need and Industrial Relevance

Resource Extraction



Industrial, 4 percer

Industrial processing

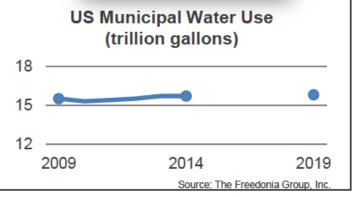
Energy Production

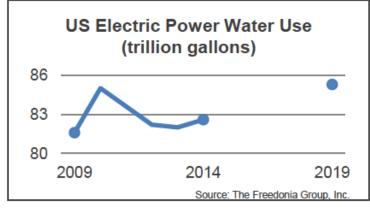

Figure 1. Total water withdrawals by category, 2010.

Need and Industrial Relevance

Advanced Treatment Methods Enable Water Reuse

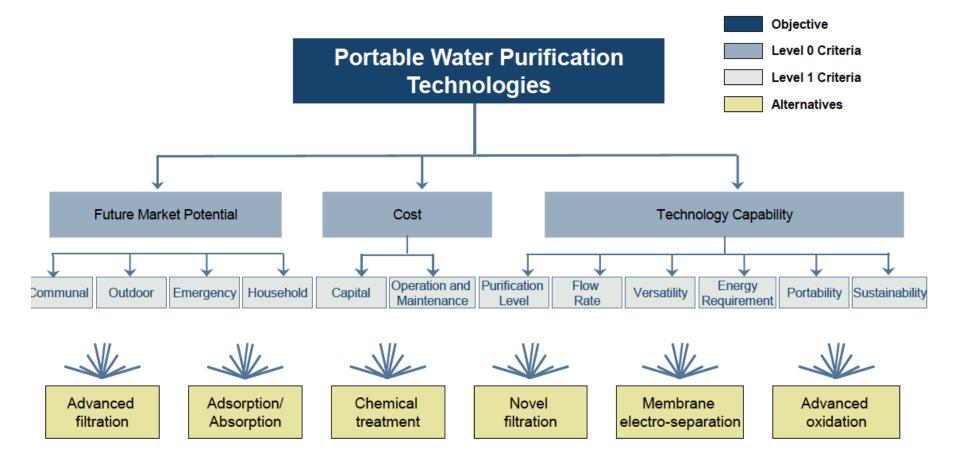
- Freshwater is a scarce commodity and thus it is in the interest of all stakeholders to manage the resource in a sustainable fashion
- Reuse necessarily becomes the simplest most practical solution
 - Addresses climate change limitations to availability
 - Address ground water depletion and salt intrusion
 - Addresses pollution control
 - Addresses sustainability
 - Addresses regulatory requirements
 - Addresses hidden "cost of water"
- Advanced Technologies are necessary to enable reuse
 - Involves treating waste with via advanced methods to remove contaminant levels to the point where it can actually be reused
 - Current advanced methods include combination of Reverse osmosis and Advanced oxidation




Cost of water goes beyond water and sewer bill

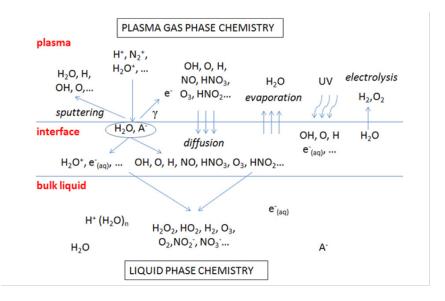
Customer Segments in need of advanced solutions: U.S. Water Treatment Equipment Demand

- Municipal demand
 - Increase of 4.4% annually to \$7.5 Billion by 2019
- Commercial and Residential Sectors (point of entry systems)
 - Rise of ~6% annually to \$1.8 Billion by 2019
- Manufacturing sector
 - Expected to increase ~6% annually to \$ 3.1 Billion by 2019
 - Sector needs are not always satisfied by municipal sources (chlorine and disinfection byproducts bad for beverage or semiconductor industry)
 - Tragic water crisis in Flint and Ford Motor
- Resource Extraction Sector (Oil/Gas/Mining)
 - expected to grow ~8% annually to \$1.9 Billion by 2019
- Power Generation Sector
 - Expected to grow 2.4 % annually to ~\$500 Million
 - Water use decline due to advanced reuse tech
- Other markets-ballast water, agriculture, zoos, ect
 - 6.1% growth per year to \$~210 M by 2019



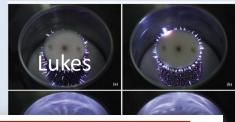
Freedonia Focus Group Reports, May 2015.

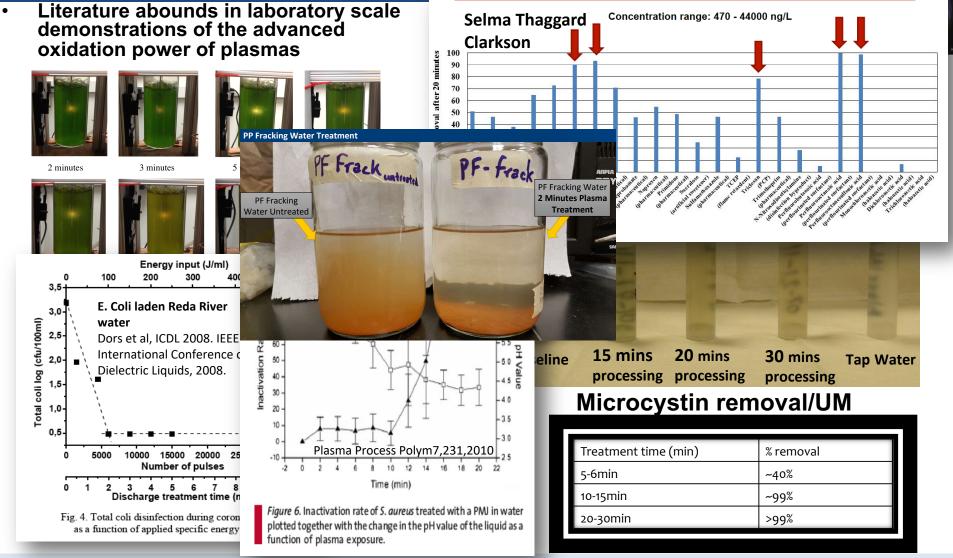
Portable Point of Use Drivers



Source: Frost & Sullivan Analysis

Approach-Plasma as an Advanced Oxidation Method




- The Plasma Value Proposition
 - Produce a range of advanced oxidation processes at once (OH, Peroxide, Ozone, Ultrasound, UV...)
 - Indiscriminate decomposition of organic contaminants
 - Potential for higher decomposition rates than conventional methods
 - Does not require consumables
 - Onsite Oxygen or Peroxide not needed
 - Power requirements estimated to be less than conventional methods (UV/Peroxide or RO)
- Plasma purifiers can be applied as point of use for areas w/o treatment infrastructure
- Technology is modular—allows for incorporation into existing infrastructure

Demonstration of Scientific Feasibility: Done!

Plasma based Water Purification: Challenges to Realization



- Two hurdles must be surmounted before plasma based water purification can be realized in practice
 - Technical feasibility demonstrated...but...
 - Must be scalable
 - Must demonstrate ease of integration
 - Must satisfy state EPA log reductions
 - Economic feasibility requires demonstration
 - Must be competitive with existing technologies
 - Power systems must be affordable
 - Must add some form of additional value
 - No consumables
 - Effectiveness independent of initial water quality

Advanced Treatment, It Costs

- Average cost in US to conventionally treat 1000 gallons of drinking water: ~2.5 dollars (adjusted for inflation)
 - Treatment accounts for 15% of this cost
 - Average American uses 100 gallons a day!
- RO cost ~4 dollars/1000 gallons
 - 15 kW hours per 1000 gallons
- Advanced oxidation costs variable 2 dollars/1000 gallons(ozone) to \$90 for ultrasound
 - Contaminant specific

Requirements

- Plasmas have demonstrated the capacity at the beaker-scale that they are effective at decomposing organic contaminants and pathogens in solution
- Currently water reuse requirements are dictated by California Standards as stated in Reuse Framework
- Plasma based purification methods must be competitive with conventional methods to be taken seriously as a solution
 - Effectiveness
 - Energy costs

Microbial Group	Criterion (Minimum Log Reduction)	Possible Surrogates
Enteric virus	12	MS2 bacteriophage
Cryptosporidium spp. ^b	10	Latex microspheres, AC fine dust, inactivated <i>Cryptosporidium</i> oocysts, aerobic spores
Total coliform bacteria ^c	9	Not applicable

Table 4.2. Microbial Reduction Criteria for AWTF Treatment Trains

Notes: aReduction criteria for ATWF, including secondary treatment; bAddresses Giardia and other protozoa as well; ^cAddresses enteric pathogenic bacteria, such as Salmonella spp. Source: Adapted from NWRI (2013)

Chemical Type	Example
Industrial chemicals	1,4 dioxane
Steroid hormones	17Beta-estradiol
Pharmaceuticals	Pain relievers

DOE Plasma Science Center Gontro biofe Rlasmaski netiosc) rtment of Energy

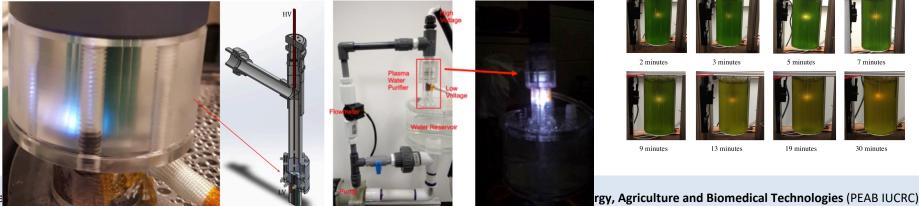
Center for

Predictive Control

Bounded Systems

Plasma Reactors for Water Purification

Menu


Set Weather V

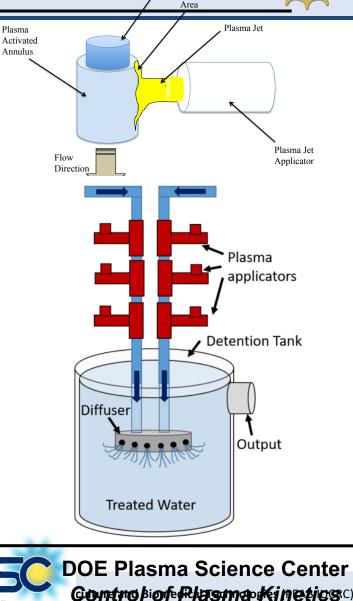
- Two types of reactors have been designed and tested based insight gleaned from prior NSF grant
 - Devices optimize plasma surface interaction without appreciably compromising throughput
 - Reactors can produce controllable peroxide and ozone concentrations levels in solution competitive with conventional systems, which require actual consumables

GO UNLIMITED

C cleveland.com

Achieving Scale: Underwater DBD

- Inline jets can be used in flow through geometries as well.
 - Source can be inserted directly into flow to essentially dose passing liquid
 - Unsteady bubble tear off disperse longer lived species deeper into the flow
- Nature of dosing depends on water quality, water flow rate and plasma power
- Batch like mixing can be achieved using an appropriately sized detention tank
- Combination of detention with multiple applicators on multiple lines is a pathway to achieving a quasi-batch treatment arrangement
- One can estimate the concentration of degraded contaminant C in subsequent **stages:** $\frac{dC}{dt} = 0 = C_0 - C - \frac{V}{nO} \cdot kC$ in steady state C is constant in $C_n = \frac{C_0}{\left[1 + \frac{V}{nO} \cdot k\right]^n}$


cience Foundation ≭ Industry University Cooperativ

Center for redictive Control Plasma Kinetics

Department of Energy

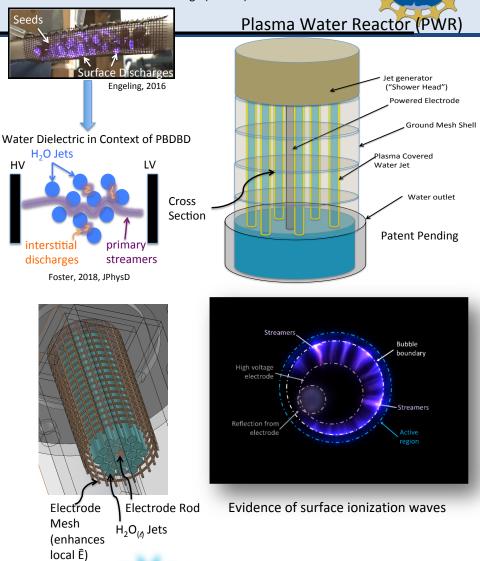
Multi-Phase and Bounded Systems

Untreated

water core

Plasma

Contact

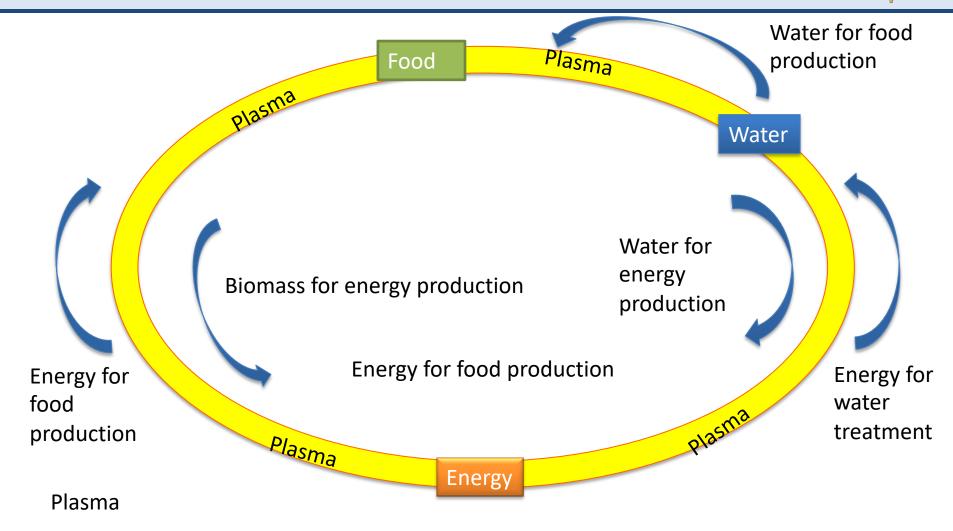

Achieving Scale: Packed Bed Discharge

Center for

Department of Energ

Predictive Control

- Since thin sheets of water are more amenable to dosing, then water can be disposed into a series of thin water streams
- Water streams can be treated as leaky dielectrics and thus can be made to operate as a multilayer dielectric barrier discharge (packed bed-like)
- Discharge formed in such a geometry would include surface ionization waves and direct stream attachment
- Plasma produced at surface and in interstitial space is source of ROS and RNS
 - Multi-mode way of dosing water


DOE Plasma Science Center

Gontro biofe Rlasmaski netiosc)

Packed Bed Dielectric Barrier Discharge (PBDBD)

The Role of Plasma in the Water Food Energy Nexus

