Project GWU # 1

- Title: Adaptive Plasmas and Plasma Medicine Mechanism
- PI(s): Michael Keidar and Taeyoung Lee, George Washington University
- Need and Relevance: medical application of plasmas require understanding mechanism of plasma action and higher control over plasma application
- **Goals:** to develop novel adaptive plasma devices and to understand the mechanism of plasma interaction with cells and tissue
- Approach: develop new diagnostics, hypothesis and validation
- Outcomes/Deliverables: new plasma devices, diagnostics
- Project Duration, Budget: 3 years / \$50k/year

C-Deab High Pressure Plasma Energy, Agriculture, and Biomedical Technologies

Need and Relevance

Recent results, brain tumor

Clinical study

Treatment of surgical margins was performed

Rush University Medical Center applied USMI/GWU CAP device for treatment for pancreatic cancer, April 2017

Adaptive plasma platform

Plasma Immunotherapy

Medium & cells effect on plasma

Medium & cells effect on plasma

Approach

• Interdisciplinary Research Toward Autonomous Cancer Therapy

- Interplay between plasma physics, mathematical oncology, control system engineering for the development of intelligent biomedical system for oncology
- Adaptivity: treatment tailored to the particular cancer cell response
- Optimality: treatment schedule optimized for cancer viability, selectivity, etc
- Robustness: reject undesired behavior caused by modeling errors and uncertainties
- Autonomy: autonomous scheduling for dose and frequency

Model Predictive Control

Motivation

- Cancer cell response to CAP treatments depends on various intrinsic and extrinsic factors;
- Mathematical model may not represent the actual response of the specific cancer cells treated;
- Adjust the treatment parameters adaptive based on the actual cell response.

Problem Formulation

- CAP treatment is repeated four times at the interval of 48 hours;
- At the end of each 48 hour period, cell viability is measured;

After completion of the treatments, cell viability should reduced to 10% **C**•**DCB** Agriculture, and Biomedical Technologies **Drexel**

Model Predictive Control

Treating Control using MPC

• Adjust the desired relative cell viability based on the actual response of the previous treatment

$$r_{desired} = 0.1^{\frac{1}{4}}$$
 at the first treatment

• (0.1)^(1/4) * expected cell viability / actual cell viability during the remaining treatments.

Numerical Simulation

- The preceding mathematical model is considered as the actual cancer response;
- The parameters of the mathematical model is altered to represent a

mathematical model available to MPC. **C·DCO** Agriculture, and Biomedical Technologies

Outcomes/Deliverables

Model Predictive Control

Red line: ideal case when the actual cancer dynamics is available Blue line : optimal control without MPC scheme; Black line : Model predictive control.

C-DEGO High Pressure Plasma Energy, Agriculture, and Biomedical Technologies

New evidence: the activation state of the CAP-treated cancer cells

C·DCOCO Agriculture, and Biomedical Technologies

Activation state of the CAP-treated cells

C. peab High Pressure Plasma Energy, Agriculture, and Biomedical Technologies

Sensitization

The slow de-sensitization

C • **D E d d** High Pressure Plasma Energy, Agriculture, and Biomedical Technologies

Drexclo Dayun Yan, et al, just submitted.

Project Timeline and Duration

Task / month	H	7	m	4	Ŋ	9	۲	∞	6	10	11	12
Plasma activation	х	Х	Х	Х								
MPC software				х	х	Х	х					
Feedback hardware							х	х	х	Х		
First demo of adaptive device									Х	Х	Х	Х

Project Budget

Item	Cost
Student stipend + tuition	\$ 35,000.00
Supplies	\$ 7,000.00
Purchased services	\$ 0.00
Equipment	\$ 0.00
Travel	\$ 3,000.00
Project total*	\$ 45,000

